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INTRODUCTION 

Fan TRANSIENT laminar free convection along a vertical 
plate, which undergoes step increase in temperature or heat 
flux from an isothermal field, it is now well recognized that 
one-dimensional conduction effects prevail in the early stages 
of the transient period, while the leading-edge effect begins to 
be felt in an increasing degree later, eventually leading to 
asymptotic steady-state behavior as time approaches in- 
finity. Analytically, this problem has not been treated to a very 
satisfactory degree in the literature. The integral solution of 
Siegel [1], though covering the complete Prandtl number 
range and both cases of step increase in temperature and heat 
flux, suffers the usual uncertainty in accuracy, and also 
exhibits unrealistic discontinuities in the transient periods. 
The purely numerical solution of Hellums and Churchill [Z] 
remains the only complete continuous solution to this 
problem. Unfortunately, their results are only for the case 
of step change in surface temperature and one Prandtl 
number of 0.733. Very recently, Goldstein and Briggs [3] 
have found it desirable in certain experimental situations to 
determine the time instants in the transient period at which 
the purely one-dimensional conduction effects end, and have 
provided a criterion for this purpose with essentially no 
justilication. Briefly, it is based on considering at each instant 
a penetration distance beyond which the conduction solution 
is valid, and this penetration distance is taken to be the 
maximum distance the leading-edge effect propagates along 
the plate with a velocity as given by the conduction solution. 
It seems questionable that the penetration velocity of the 
leading-edge effect, which is primarily related to the leading- 
edge phenomenon, should be determined from the conduc- 
tion solution, which is entirely independent of the leading 
edge. Consequently, this point must be cleared up before their 
quantitative results can be put to general use, despite the fact 
that their results do compare well with some experimental 
data, and somewhat less so with the numerical result of 
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Hellums and Churchill [2]. The purpose of the present study 
is not to attempt a direct analytical solution to this difficult 
problem, but to re-examine from a mathematical viewpoint 
the problem of determining the range of validity of the pure 
conduction region. It will be seen that the end of this conduc- 
tion region is closely related to the possible occurrence of 
essential singularity in the governing differential equation. 
A criterion can then lx obtained, which is shown to be re- 
ducible to that proposed by Goldstein and Briggs [3], thus 
giving their quantitative results a needed justification. The 
present approach follows closely the mathematical study of 
Stewartson [4] on the problem of impulse flow over a semi- 
infinite flat plate. 

FORMULATION AND ANALYSIS 

Laminar boundary-layer equations for unsteady free con- 
vection along a semi-inlinite vertical plate with constant 
properties except slight changes in density and negligible 
viscous dissipation are well known, and may be readily 
written in the following dimensionless forms: 

u, + uu, + vu, = G + uyy (11 

24, + ny = 0 (21 

G, + UC, + oG, = (l/u) G,, (3) 

where x = jziL, y = p/L, t = 9/L’, u = iiL/v, u = CL/V, 

G = gBL3(T - T&v2 and X and J are the physical co- 
ordinates shown in Fig. 1, ii and I the velocity components in 

c’,,r, 
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FIG. 1. Space coordinate system. 
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the X- and j-directions, respectively, T the temperature 
variable, I the time variable, 8 the gravitational acceleration, 
p the coefficient of volumetric expansion, Y the kinematic 
viscosity, L the plate height and rr the Prandtl number. 
Subscripts x, y and t denote respective partial derivatives, 
while subscript co refers to undisturbed ambient condition. 
For the transient problem under consideration, the initial 
and boundary conditions are : 

t<0 u=G=O (4) 

tro y=o u=v=o G=aor 
G, = -qw 

I 

(3 

Y-+W u-+0 G-+0 

where the dimensionle~ surface temperature n and surface 
heat flux qW are both taken to be constant. The general 
qualitative behavior of the solution to the above equations is 
knownAt small times, one-dimensional transient conduction 
prevails, and both G and u are only functions of y and t. The 
x-dependency of the solutions, or the leading-edge effect, 
does not occur until a specific combination of x and t is 
reached, marking the end of the conduction region. There- 
after, the leading-edge effect becomes increasingly more 
dominant and finally the steady-state similarity solutions 
are approached when t becomes large. To bring out these 
limiting behaviors as well as mathematical difficulties asso- 
ciated with the present problem, it is desirable to re-cast the 
dependent variables in equations (l)-(3) in the following 
forms : 

$(x, y, t) = t3” G,W F(G Y) 
(6) 

G(x, y> 8) = G,&) @k Y) 

where (I, is the usual stream function such that u = @, and 
tl = -J/,, and G,,,(r) is the plate surface temperature ex- 
pressed in the form G_(r) = at9 introduced here for the 
purpose of unifying the analyses for both cases of step change 
in surface temperature and heat flux. As shown by Menold 
and Yang [S], p = 0 is for the case of step increase in tem- 
perature and p = + signifies the corresponding heat-flux 
case. The two new independent variables r = t2G,(r)/x and 
Y = v/(2Jt) now replace x, y and t in the original equations. 
Based on equations (lH3), it may be readily shown that the 
new dependent variables F and 8 are now governed by the 
following respective equations: 

F rry + 4YFrr - 4(1 + p) Fr + 88 

= [(4p + 8) r - 2rZF,] Fry + 2rZF,F,, (7) 

(l/CT) f&r + 2YQr - 4p@ 

= [(4p + 8) r - 2r2F,] 0, + 2rZF,B, (8) 

where subscripts t and Y again denote partial derivatives. 
The initial and boundary conditions, according to (4) and 
(5), now reduce to 

F(O, Y) = F,(Y) w! Y) = Q,(Y) 

FfT, 0) = F,(T, 0) = F,(T, (03) = @(T, 72) = 0 

i 

(9) 

.!&, 0) = 1 

where F,(Y) and B,(Y) are the pure conduction solutions 
satisfying equations (7) and (8) with t = 0. They have already 
been given by Menold and Yang [S] and also by Schetz and 
Eichhorn [6] for the complete range of Prandtl numbers, 
and hence will not be given here. 

Mere inspection of equations (7) and (8) may suggest 
solutions in the form of asymptotic series expansions 

O(r, Y) = i T”@“(Y) (10) 
n=0.1.... 

Unfortunately, this scheme fails compfetely in view that it 
may be readily shown that all functions F, and 0, for n $ 0 
vanish identically, when equations (10) are substituted in 
(7) and (8) and terms of like powers of r are collected. Mathe- 
matically, the failure of this approach strongly indicates the 
possible existence of an essential singularity in the solution 
at a certain value of r, at which the dependent functions are 
identicai to the r-independent solution, and there, all deriva- 
tives of these functions with respect to rare zero. It is perhaps 
evident that this value of r represents the end of the pure 
conduction region. The strong possibility ofsuch an essential 
singularity to exist is also well substantiated by the physical 
phenomenon itself. Initially, the free-convection process is 
inde~ndent of x and a finite interval of time must elapse 
before the leading-edge effect can be felt at a given x. This 
transition can only be carried out through the presence of an 
essential singularity. 

To determine the exact location of this singularity is still 
rather difficult, since the mathematical theory on the occur- 
rence of essential singularities in differential equations has 
not been developed to any extent even at the present time. 
However, it is known that they usually occur when the coefh- 
cients of the leading derivative terms in the differential equa- 
tion vanish. Since in the neighborho~ of this singularity, F 
and B are expected to deviate, at best, only slightly from F, 
and Be, respectively, it is here only necessary to consider 
small deviations from the conduction solutions. Thus, let 

F(r, Y) = F,(Y) + RT, Y) 

B(r, Y) = O,(Y) + B(7, Y) (11) 

where F * F, and 8, < 8,. When these are substituted into 
equations (7) and (8) and higher orders of F and 0 are neg- 
lected, we obtain 

F,,, + 4YFrr - 4(1 + p) F, i- 8@ 

= [(4p + 8) r - 2r2Fb] F,, t- 2r*F;F, (12) 

(l/o) urr + ZYB, - 4pB 

= ((4~ + 8) I - 2rZFbj 8, + 2tZ&-,F, (13) 
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The only coefficient of the leading derivative terms that can which do suggest that t, is what we are seeking. The experi- 

possibly be zero is [(4p + 8) T - 2?Fb], which vanishes when mental data of Goldstein and Eckert [73, the integral solu- 

(1) r = 0, (2) T = (2p + 4)/F,, or (3) T = (2p + 4)/Fb for tions of Siegel [l] and Gebhart [8], and the numerical solu- 

Fb < Fb,, where FL, is the maximum value of F& which de- tion of Hellums and Churchill [2] all indicate the end of 

pends only on p and c. In addition to these three possibili- pure conduction region occurring in the general neighbor- 

ties, the singularity could also occur anywhere between hood of TV Consequently, the region of validity of the one- 
0 < r < (2p + 4)/F&,,. Here primes all refer to derivatives dimensional transient conduction solution can be placed in 

with respect to Y O<T<T, 

The first possibility that the singularity occurs at r = 0 
can be immediately ruled out, since the terms reflecting the 
leading-edge effect are all of the order of T’, and yet the 
solution sought is of the order of r. The likelihood of having 
an essential singularity in the region 0 i r < (2p + 4)/F&,, 
may also be ruled out, based on the following considerations. 
In this region, the coefficient [(4p + 8) T - 25’Fb] is non- 
zero and positive, and for the present purpose it is desirable 
to simplify equations (12) and (13) by retaining only the lead- 
ing derivative terms with respect to T and letting this non- 
vanishing coefficient be replaced by a positive constant y. 
For simplifying the presentation, only equation (13) is 
considered here. Thus, we have 

Now we are in a position to compare this criterion with 
that somewhat arbitrarily chosen by Goldstein and Briggs [3]. 
As pointed out previously, their assertion is that the leading- 
edge effect propagates along the plate with a velocity as 
given by the x-independent conduction solution. The maxi- 
mum penetration distance x at time t, beyond which the 
conduction solution is valid, is then used as a criterion for 
locating the end of the conduction region. More specifically, 
it may be written, in the present notation, as 

which reduces to 

x = C i u dtlmax 
0 

(l/u)&, + 2Y0r - 4pB = 70, (14) 

withtheconditionsr = a,0 = 0; Y= 0,8 = 0;and Y+ co, 
0 + 0, where E is the location of the essential singularity, if it 
exists in this region. The above equation has a solution 
satisfying the two boundary conditions in the form 

or 

r=G, 2(P + 2) 
X FO, 

x sinsY ds 

where 4 is an arbitrary function. The initial condition T = E, 

0 = 0 immediately leads to I$ = 0, and consequently 0 = 0 
for any Y and T in this region. Similarly, it can be shown that 
F is also identically zero. Consequently, in this region no 
essential singularity is likely to exist. 

This leads us to the next possible location at T = TV, where 
rc = (2p + 4)/F&,,. At the present time, there is no conclusive 
evidence that an essential singularity mUSt occur at T = T, 

The chief difficulty lies in that uniqueness theorem of solu- 
tions to the laminar boundary-layer equations is not yet 
proven. Hence, even if we could obtain a solution which 
possesses an eSSentd SiUgUhrity at T = T, there iS Still no 
guarantee of its existence. For this reason, such a solution 
is not attempted here. However, this value rcr according to 

the previous analysis, does represent the minimum possible 
value. From the literature, there are a number of indications 

which is seen to be identical to To Consequently, all quanti- 
tative results obtained by Goldstein and Briggs [3] for the 
cases of step increase in surface temperature and in surface 
heat flux, relative to the extent of the pure conduction region, 
are now justifiable. 
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